- симплициальное множество
- симпліці́йна множина́
Русско-украинский политехнический словарь. 2013.
Русско-украинский политехнический словарь. 2013.
СИМПЛИЦИАЛЬНОЕ МНОЖЕСТВО — (прежние названия полусимплициальный комплекс, полный полусимплициальный комплекс) симплициальный объект категории множеств Ens, т. е. система множеств (n х слоев) , связанных отображениями , (операторами граней), и si: К п Kn+1, (операторами… … Математическая энциклопедия
СИМПЛИЦИАЛЬНОЕ ПРОСТРАНСТВО — топологическое пространство X, снабженное таким покрытием топологическими симплексами (наз. триангуляцией), что грани любого симплекса триангуляции принадлежат триангуляции, пересечение любых двух симплексов триангуляции является гранью каждого… … Математическая энциклопедия
ГОМОТОПИЧЕСКИЙ ТИП — класс гомотопически эквивалентных топологич. пространств. Отображения и наз. взаимно обратными гомотопическими эквивалентностями, если и Если выполнено только первое из этих соотношений, то gназ. гомотопически мономорфным отображением, а f… … Математическая энциклопедия
СИМПЛИЦИАЛЬНАЯ СХЕМА — (прежние названия симплициальный комплекс, абстрактный симплициальный комплекс) множество, элементы к рого наз. вершинами и в к ром выделены такие конечные непустые подмножества, наз. симплексами, что каждое непустое подмножество симплекса s… … Математическая энциклопедия
СТАНДАРТНЫЙ СИМПЛЕКС — 1) С. с. симплекс размерности пв пространстве с вершинами в точках е i=(0, . . ., 1, . . ., 0), i=0, . . ., п(единица стоит на i м месте), т. е. Для любого топологич. пространства . непрерывные отображения представляют собой сингулярные симплексы … Математическая энциклопедия
СИМПЛИЦИАЛЬНЫЙ ОБЪЕКТ — категории произвольный контравариантный функтор X: (или, что то же самое, ковариантный функтор ) из категории D, объектами к рой являются упорядоченные множества [n]={0, 1, . . ., п}, , а морфизмами неубывающие отображения m: . Ковариантный… … Математическая энциклопедия
ГОМОТОПИЧЕСКИЙ ТИП — топологизированной категории проективная система топологич. пространств, ассоциированная с топологизированной категорией и позволяющая определять гомотопические группы этой категории, группы гомологии и когомологий со значениями в абелевой группе … Математическая энциклопедия
КОМПЛЕКС — частично упорядоченное рефлексивным, правильным и транзитивным отношением < множество К={t} каких либо элементов t, вместе с целочисленной функцией dim t, называемой размерностью элемента t,[t: t ], называемой коэффициентом инцидентности… … Математическая энциклопедия
ПРОЕКЦИОННЫЙ СПЕКТР — индексированное направленным множеством( А, >) семейство симплициальных комплексов такое, что для каждой пары индексов , для к рых a >a, определено симплициальное отображение (проекция) комплексов Na на комплекс Na. При этом требуется,… … Математическая энциклопедия
КУСОЧНО ЛИНЕЙНАЯ ТОПОЛОГИЯ — раздел топологии, изучающий полиэдры. Под полиэдром понимается прежде всего подмножество топологического векторного пространства, представимоо конечным или локально конечным объединением выпуклых многогранников ограниченной размерности, а также… … Математическая энциклопедия
ПСЕВДОМНОГООБРАЗИЕ — n мерное замкнутое (соответственно, с краем) конечное симплициальное разбиение со следующими свойствами, а) Неразветвленность: каждый (n 1 ) мерный симплекс является гранью ровно двух (соответственно, одного или двух) n мерных симплексов; б)… … Математическая энциклопедия